The Substitution Theorem for Semilinear Stochastic Partial Differential Equations
نویسندگان
چکیده
Abstract. In this article we establish a substitution theorem for semilinear stochastic evolution equations (see’s) depending on the initial condition as an infinite-dimensional parameter. Due to the infinitedimensionality of the initial conditions and of the stochastic dynamics, existing finite-dimensional results do not apply. The substitution theorem is proved using Malliavin calculus techniques together with new estimates on the underlying stochastic semiflow. Applications of the theorem include dynamic characterizations of solutions of stochastic partial differential equations (spde’s) with anticipating initial conditions and non-ergodic stationary solutions. In particular, our result gives a new existence theorem for solutions of semilinear Stratonovich spde’s with anticipating initial conditions.
منابع مشابه
$L^p$-existence of mild solutions of fractional differential equations in Banach space
We study the existence of mild solutions for semilinear fractional differential equations with nonlocal initial conditions in $L^p([0,1],E)$, where $E$ is a separable Banach space. The main ingredients used in the proof of our results are measure of noncompactness, Darbo and Schauder fixed point theorems. Finally, an application is proved to illustrate the results of this work.
متن کاملContinuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative L'evy noise are considered. The drift term is assumed to be monotone nonlinear and with linear growth. Unlike other similar works, we do not impose coercivity conditions on coefficients. We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. As corollaries of ...
متن کاملThe Yamada-Watanabe theorem for mild solutions to stochastic partial differential equations
We prove the Yamada-Watanabe Theorem for semilinear stochastic partial differential equations with path-dependent coefficients. The so-called “method of the moving frame” allows us to reduce the proof to the Yamada-Watanabe Theorem for stochastic differential equations in infinite dimensions.
متن کاملFoundations of the Theory of Semilinear Stochastic Partial Differential Equations
The goal of this review article is to provide a survey about the foundations of semilinear stochastic partial differential equations. In particular, we provide a detailed study of the concepts of strong, weak and mild solutions, establish their connections, and review a standard existenceand uniqueness result. The proof of the existence result is based on a slightly extended version of the Bana...
متن کاملStochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered. The coefficients are assumed to have linear growth. We do not impose coercivity conditions on coefficients. A novel method of proof for establishing existence and uniqueness of the mild solution is proposed. Examples on stochastic partial differentia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007